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A critique of the causal and classical stochastic interpretations of nonrelativistic 
quantum mechanics is presented. The only way that the classical stochastic 
formulation can be made compatible with the theory of quantum measurement is 
to extend the probability measure density for fluctuating paths to the complex 
domain. In doing so, we obtain the generalized stochastic formulation in which 
the methods of classical probability theory can be used to describe the quantum 
mechanical phenomenon of interfering alternatives. Illustrative examples from 
quantum theory are used to show the complete compatibility between the 
traditional and generalized stochastic interpretations of quantum mechanics. 

1. THE ORIGINS OF THE STOCHASTIC FORMULATIONS 

Causal formulations of quantum theory grew out of the unwillingness 
to accept the fact that physical phenomena are not governed by physical 
laws but that only predictions of the expected values of each of various 
possible outcomes of the same experiment can be made. Yet, it is rather 
ironical that the causal interpretations found it necessary to rely upon a 
statistical interpretation of their results. 

The aim of the causal formulations was to attribute a physical objectiv- 
ity to the wave function which is the solution to the Schr6dinger equation 
(Freistadt, 1957). Through the "delinearization" of the Schr6dinger equa- 
tion, two field equations for real velocity potentials in configuration space 
were obtained, to which a causal interpretation was given in the familiar 
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language of hydrodynamics (Madelung, 1926; Takabayasi, 1952, 1953; 
Bohm and Vigier, 1954; Sch~berg, 1954). It was not surprising that one of 
the field equations turned out to be the continuity equation since the basis 
of the causal interpretations consisted of the SchrOdinger equation and the 
Born statistical interpretation of the wave function. Hence, by their very 
starting point, the causal formulations were circumvented by a statistical 
justification (Bohm, 1953). The other field equation had the formal ap- 
pearance of a classical Hamilton-Jacobi equation and attempts were made 
to give a classical description to the motion even though the potential, 
appearing in the equation, was definitely nonclassical (Takabayasi, 1953, 
1954; Bohm, 1952a). To this so-called "quantum" potential was attributed 
the origins of the nonclassical behavior of matter (i.e., the wave like 
properties and the existence of discrete stationary states). 

Notwithstanding the conceptual appeal of the causal formulations, they 
posed more problems than they resolved (Freistadt, 1957). Rather than 
resulting from a limiting process, in the way that classical mechanics 
emerges from quantum mechanics in the limit of very short wavelengths, the 
causal formulations were a blend of classical and quantum concepts. The 
necessity of having to invoke two fields to describe the evolution of 
quantum systems which were inherently coupled to one another through the 
quantum potential is completely foreign to classical mechanics. In fact, it 
had to be considered as a new law of motion which had no analog in 
classical mechanics. The coupling afforded between the continuity equation 
and the Hamilton-Jacobi equation via the quantum potential elicited a 
"mysterious dependence of the individual on the statistical ensemble of 
which it is a member" (Freistadt, 1957). 

Being causal, these formulations could not negate the possibility of 
measuring simultaneously both the position and velocity of the particle with 
an unlimited precision. Another apparent conclusion was that any arbitrary 
distribution, since it evolves according to the continuity equation, will 
remain invariant for all times, and, in general, it will not coincide with the 
so-called "equilibrium" distribution, dictated by the Born statistical inter- 
pretation of the wave function. According to the causal interpretations, the 
density of particles p was taken to be proportional to the density of the 
background fluid. And if the equilibrium distribution, p = ]~12, where ~b is 
the wave function, did not hold initially, then it would be brought about in 
time through the presence of fluctuations (Bohm and Vigier, 1954). This 
appeared to be the only logical explanation of how the equilibrium distribu- 
tion could be brought about in time. And "quantum fluctuations like 
classical fluctuations (e.g., Brownian motion) have basically the same origin 
- - the  chaotically complicated nature of the motion at the microscopic level" 
(Bohm, 1953). 



Stochastic Interpretations 587 

It thus appeared that instead of having to treat an ensemble of 
particles, it might perhaps be possible to develop a completely classical 
formulation of quantum mechanics based upon the irregular motion of a 
single Brownian particle immersed in a suspension of lighter particles. This 
was later to develop into the classical stochastic formulation of nonrelativis- 
tic quantum mechanics. However, prior to a discussion o f  the classical 
stochastic formulation, several comments are in order regarding the causal 
description. 

The common aspect of the proposed causal formulations was the 
decomposition of the complex velocity field into two real fields whose time 
evolution was governed by nonviscous Euler equations of hydrodynamics 
(de Broglie, 1927; Rosen, 1945; Bohm, 1952b). The transition from classical 
to quantum mechanics then lay in the "linearization" of the field equations. 
yet a prior knowledge of the Schr0dinger equation was necessary in order to 
form the complex velocity field from the real components which satisfied 
the nonviscous Euler equations. Moreover, it is by no means apparent that 
the description afforded by two real velocity fields will be the same as a 
single, complex velocity field. In fact, we shall see that the two descriptions 
are, in general, not equivalent and, at most, the causal description can only 
achieve a partial success when one of the components of the complex 
velocity field vanishes. This attributes a preferential role to one of the 
velocity fields and it "behaves much more like an attached field than like an 
external field" (Freistadt, 1957). This conclusion can only be arrived at by 
considering the Schr0dinger equation and not the real field equations 
themselves. 

Another perplexing feature of the causal interpretation was the intro- 
duction of the classical concept of force into quantum mechanics. For then, 
every action there would necessarily be a reaction and it was the "reaction" 
which was completely foreign to quantum mechanics. 

The classical concept of Brownian motion in nonrelativistic quantum 
mechanics was developed by Nelson (1966, 1967) and we shall refer to this 
formulation as the "classical" stochastic formulation. Nelson attempted to 
establish an equivalence between classical Markov processes and nonrelativ- 
istic quantum mechanics by deriving the Schr0dinger equation from a 
Brownian motion process. According to the classical stochastic formulation, 
the kinematics of quantum processes would be described by the Einstein- 
Smoluchowski approximation of classical Brownian motion in configuration 
space while the dynamics would be governed by Newton's law of motion. 
We preface our remarks by noting that from a stochastic point of view, the 
two aspects of the theory are incompatible with one another. The stochastic 
process which is compatible with Newton's second law is not the Einstein- 
Smoluchowski process but rather the Ornstein-Uhlenbeck process which is 
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a Markov process in phase space. Only in the limit of an infinitely large 
friction coefficient, in which the process tends to a limiting velocity, is the 
Einstein-Smoluchowski process a valid approximation to the Ornstein- 
Uhlenbeck process. Even if Nelson were to have considered a Brownian 
motion in the Einstein-Smoluchowski approximation he would have had to 
relegate the irreversibility of the motion. This Nelson did by considering the 
simultaneous existence of the reverse Brownian motion process; averaging 
both the forward and reverse Brownian motions he obtained a time-depen- 
dent condition for dynamical equilibrium which rendered the theory com- 
pletely reversible (Lavenda, 1980). Although it is formally analogous to the 
Einstein condition of dynamic equilibrium in a suspension of colloidal 
particles in which the two irreversible effects of the drift and diffusion 
exactly balance one another, the density of particles is no longer time 
independent but rather satisfies the reversible continuity equation. The 
continuity equation resulted from an average of the forward and reverse 
Fokker-Planck equations. 

In fact, the continuity equation and the condition for a time-dependent 
dynamical equilibrium are what actually constitute the basis of Nelson's 
theory and not the forward and reverse Markov processes considered 
individually. In order to account for the potential in Schr6dinger's equation, 
Nelson had to introduce the concept of force, and this he did by postulating 
a time invariant form for the mean acceleration. In this manner, Nelson 
obtained the field equations of the causal theories, and by constructing the 
complex velocity field from these components, he derived the Schr6dinger 
equation upon integration. Hence, the classical stochastic formulation is 
likewise valid only for bound states in which the unprivileged velocity 
component vanishes. And like the causal descriptions, the classical stochas- 
tic formulation fails to incorporate the phenomenon of interfering alterna- 
tives which gives rise to the wavelike properties of matter. 

The classical stochastic formulation avoids any mention of the transi- 
tion probability density, which along with the entire hierarchy of probability 
densities also satisfies the Fokker-Planck equation. For then it must be 
shown that, in the asymptotic time limit, the transition probability density 
transforms into the equilibrium or invariant distribution given by the Born 
probability relation. This would bring us back to the Bohm mechanism 
(Bohm and Vigier, 1954), whereby fluctuations are introduced to explain 
why any arbitrary initial distribution should decay to the equilibrium 
distribution in time. 

It is now apparent that the classical stochastic formulation, which 
invokes a supposedly classical Markov process, is one of appearance rather 
than substance. As a result of the time-dependent condition of dynamical 
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equilibrium, the probability density does not satisfy either of the Fokker- 
Planck equations separately but rather satisfies a time reversible continuity 
equation. This excludes the possibility of introducing a physical mechanism 
whereby any arbitrary initial distribution would decay to the equilibrium 
distribution, dictated by the Born statistical relation, merely with the 
passage of time. 

Even if a unique correspondence could have been made between the 
evolution of two real velocity fields and the Schrt~dinger equation, there is 
more to quantum mechanics than the SchrOdinger equation. One would still 
have to explain why certain quantities are not physical observables and why 
noncommuting physical observables are not simultaneously measurable with 
unlimited precision. It could be argued that quantum mechanics is only an 
approximation to a more fundamental theory, but this would only bring us 
back to hidden variable theories which have no physical confirmation. 

As an alternative, we accept the view that there is a fundamental limit 
to physical measurements which is caused by the underlying "noise" present 
in the medium. Like the advocates of the statistical justification of the 
causal description, we can only say that it behaves in very much the same 
way as thermal fluctuations while emphasizing the completely different 
origins of the two phenomena. If we (i) realize that the inherent shortcoming 
of the causal formulations lay in the construction of real velocity fields, (ii) 
relinquish the requirement that the probability of a path be a real quantity, 
and (iii) recognize the fact that the velocity field in the stochastic analysis is 
an average quantity, then we are led to consider a complex measured, real 
diffusion process (Santamato and Lavenda, 1981). And although the complex 
probability measure of a set of real paths will certainly not turn out to be the 
probability that a path belongs to the set, everything in nonrelativistic quantum 
theory works as if it were. 

The complex probability measure density for real path trajectories is 
responsible for the autoselectiveness of our generalized stochastic approach 
in that only physical observables turn out to be real quantities. On account 
of the inadequacies of the classical stochastic formulation, we are led to 
abandon the search for a purely classical interpretation of quantum theory 
with the consolation that by extending the probability measure to the 
complex domain, we are able to use the classical probability theory in a 
nonclassical context. Moreover, we shall see that the only conceptual 
difference between classical probability theory and the generalized stochas- 
tic approach lies in the fact that the drift vector is not a preassigned 
quantity but rather depends on the wave function. And it is through this 
complex velocity field that the "pilot" wave is able to guide the motion of 
the particle (de Broglie, 1927). 
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2. COMPLEX PROBABILITY MEASURES 

The same problems that beset the Feynman path integral are also 
present in the definition of complex probability measures. This is not to say 
that the generalized stochastic approach is equivalent to the Feynman path 
integral formulation of nonrelativistic quantum mechanics. The fundamen- 
tal difference is that whereas the path integral formulation deals with the 
probability amplitudes for possible events (Feynman and Hibbs, 1965), the 
generalized stochastic approach treats the stochastic processes giving rise to 
those events. In place of probability amplitudes, there are probability 
densities which are complex for those events which are not observable. 

The formal similarity between the Feynman integral and the Wiener 
integral has long been known. If the mass m in the action of the Feynman 
integral is replaced by ira, the (measure-theoretic) Wiener integral results 
(Nelson, 1964). The analyticity in rn is established, and continues from 
positive-imaginary to positive-real values. This method is limited to only 
those cases which present extensive analyticity (Tarski, 1975). The prob- 
lem can be stated in the following way. Denote #w(dx) as the Wiener 
measure and f ~ w ( d x )  is the error integral. Alternatively if ~F(dX)= 
exp( - ix 2/2 o 2t ) / (  -- 2irro 21 )1/2 dx then f~t r(dx ) is a linear combination of 
Fresnel integrals. The Wiener integral of a functional f (x)  is related 
formally to the Feynman integral by 

= f  (ax)i(xl (1) 

The problem is to give a rigorous definition to (1) so that ~r(dx) can be 
interpreted as a complex probability measure. Expression (1) can be rewrit- 
ten in the form 

. . . . .  >/V(x) 

where 2 ( . )  is an infinite product of Lebesgue measures. The above form 
presupposes a Hilbert space. It6 (1966) considered the path integral in this 
form and showed asymptotic convergence (in the limit as the covariance 
operator tends to infinity) for a rather restricted class of functionals f with 
respect to potentials appearing in the Schr0dinger equation. 

Other definitions have appeared in the literature (cf. Tarski, 1975), each 
with its own limited range of validity, and it is not our purpose to select any 
one of these definitions as the definition of the generalized measure. Rather 
we take the pragmatic view that (1) exists and show that it gives the correct 
physics in every case. 
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The same formal definitions that apply to real probability measured 
stochastic processes apply equally as well to stochastic processes with 
complex probabili ty measures. Let ( X ( z ) :  r ~ [s, t]} denote a real stochas- 
tic process on the state space E d (d >11). The state space is endowed with 
the o algebra of Borel sets generated by the cylinder events 

< ,  < < b,,} 

for s ~< rx < " " " < r. ~< t. Suppose that a complex probability measure ~(dx) 
is induced on this o algebra. Then the complex probability measure that a 
system starting at (y,  s) is between a 1 and b 1 at time r 1 . . . . .  and is between 
a,, and b. at time r. is 

�9 ." ,p(x,,,r,,lx,,_t,r,_~)" "p(x,,r, ly, s)dx, . . -dx,  (2) 

where the complex transition probabilities p are the weight factors 

+ ' - x i ) / 4 ( r i +  "r,)] p(x,+,,r,+~lx,,r,)= exp[-i(x'+t-x') D- (x,+ a , - -  

{IDl[--4i~r(ri+l--'ri)]d} 1/2 

(3) 

in the complex measure (2) where 2D is the positive definite covariance 
matrix, I'[ denotes the determinant and + the transpose. 

In the generalized stochastic approach, the real standard Wiener pro- 
cess W(I) is a complex measured process. It will henceforth be referred to as 
a complex measured, standard Wiener process which possesses all the 
formal statistical attributes of its real measured analog (i.e., stationatity and 
independent increments) with zero mean and 

E( W(t)W + (s )}  = - i I ( t -  s) (4) 

where I is the unit matrix. This is to say that although W(t) is a real 
Brownian motion, it has a complex probability associated with it. 

The conditional probabili ty that W(t) ~ ~ ,  a Borel set, at time t if it 
had the value W(s) = y at the earlier instant s, is 

1 
~ ( W ( t ) e ~ l W ( s ) =  y} = 

( -4i~r(t - s)} a/21OlW2 

[ i(x-y)+D-I(x-y)]~t(;=-~ X / ' e x p  - dx (5) 
a ~  
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If (5) had turned out to have been real, it would have contradicted quantum 
theory, which asserts that only one measurement can be made on the same 
system. In this sense, a complex probability measure for real diffusion 
process stands in the defense of the quantum theory of measurement. The 
complex probability (5) is known to coincide with the complex transition 
probability 

P(~ ,  tly, s) = ~ {  W(t) ~ ~ l W ( s )  = y} (6) 

and since the process is Markov, it satisfies the Chapman-Kolmogorov 
relation 

P(~ ,  fly, s) = L P(~ ,  tlz, r)P(z ,  rlY, s) dz (7) 

Provided the density 

p( x, tly, s) = P( dx, rly, s )/dx (8) 

exists, it too will satisfy the Chapman-Kolmogorov relation. 
The Chapman-Kolmogorov relation for the density (8) is formally 

analogous to the propagator relation in the Feynman path integral formula- 
tion. However, whereas the kernel is the propagator of the wave function [cf. 
equation (38)] or the probability amplitude, the complex transition proba- 
bility density (8) is the propagator of the real probability density (Santamato 
and Lavenda, 1981) 

p(x, t) = f;~p(x,  tly, s)p(y,  s) dy (9) 

It is a remarkable feature of the generalized stochastic formulation that (9) 
is always a real quantity even though the transition probability density is 
necessarily complex. 

3. QUANTUM MECHANICAL DIFFUSION PROCESSES 

In this section we derive an explicit formula for the complex transition 
probability density for a given quantum mechanical diffusion process. Let 
X(~-) be a real diffusion process on the interval [s, t] with values on E a. The 
decisive properties of diffusion processes which are Markov with almost 
certainly continuous sample functions X(~0, .) (where ~o is the sample tag 
which will usually be suppressed), is that their transition probability is 
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uniquely determined by the first two moments of the distribution; that is, 
the drift vector 

Ev.s{x(t)-X(s)} =b(y , s ) ( t - s )+O( t - s )  (10) 

and the diffusion matrix D (Arnold, 1974), where 

Ev. , . ([X(t)-X(s)][X(t)-X(s)]+}=-2iD(t-s)+O(t-s)  (11) 

where E,~s denotes the conditional expectation with respect to the complex 
probabiiity measure under the condition that X(s) = y as t $ s. Hence, b is 
the mean velocity vector of the random motion described by the real 
diffusion process X(t) and D is a measure of the local magnitude of the 
fluctuation of X(t)-X(s) about the mean value. 

The diffusion process is governed by the stochastic differential equa- 
tion 2 

dX(t)=b(X(t),t)dt+(2D)~/2dW(t), X(s)=y (12) 

where W(t) is the complex measured Wiener process introduced in Section 
2. Classically speaking, equation (12) would correspond to the Einstein- 
Smoluchowski process which is derived from the Ornstein-Uhlenbeck pro- 
cess in the limit of an infinitely large friction coefficient. No such approxi- 
mation exists in the generalized stochastic formulation. The Ornstein- 
Uhlenbeck process describes the phase space Brownian motion in an 
external field of force. In quantum mechanics, forces do not act on particles 
to cause a change in their motion. The fundamental classical notion of 
regarding forces as the cause of changes in the motion is replaced in 
quantum mechanics by momentum as being the direct cause in conjunction 
with the de Broglie relations. In the generalized stochastic formulation, the 
potentials of the field of force are seen to modify the probability of finding 
the particle in any given state through the complex probability measure for 
the set of paths. This is entirely consistent with quantum theory, which 
negates the possibility of applying Newton's law of motion to a single 
electron through the assertion that momentum and position cannot exist 
under conditions in which they are simultaneously measurable with un- 
limited precision. 

Quantum theory places a lower bound on the limit of the precision of 
this measurement and it is natural to take Planck's constant h (divided by 
2~r) as a measure of the strength of the random fluctuations by setting it to 
be proportional to the diffusion coefficient. Furthermore, in order to obtain 
the correct limiting behavior in the case of large mass where the motion 

2This equation is to be interpreted in a purely formal sense since the drift is an already 
averaged quantity with respect to a complex probability distribution (cf. Eq. (10)). 
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should become classical, the diffusion coefficient should also be inversely 
proportional to the mass, viz., 

2D = _h I (13) 
t// 

which has long been known to be the connection between Brownian motion 
and quantum mechanics (Fi~rth, 1933). 

In summary, equation (12) is not to be considered as an approximation 
to a more fundamental description of the motion in the way that the 
Einstein-Smoluchowski process is an approximation to the Ornstein- 
Uhlenbeck process. Rather, it is the momentum which controls statistically 
the relation between events at different times, according to the stochastic 
differential equation (12) (Lavenda and Santamato, 1980a,b). 

The complex transition probability can now be derived by employing 
the property of the absolutely continuous substitution of (complex) proba- 
bility measures for diffusion processes with the same local variances but 
with different drifts. To this end, we compare the quantum mechanical 
diffusion process (12) with the free diffusion process 

dX( t )  = ( 2 D ) l / 2 d W ( t ) ,  X ( s )  = y (14) 

The process X'(t) has the same sample functions as the process X(t) but it is 
considered as a distinctly different stochastic process with respect to its 
complex probability measure/2(dx), as opposed to the complex probability 
measure t~(dx) of the quantum diffusion process X(t). 

The transformation of the free diffusion process A"(t) into the quantum 
diffusion process X(t) provides us with a nice interpretation of the quantum 
theory of measurement when it is viewed as arising from the interaction of 
the system with the measuring apparatus. Prior to the interaction, quantum 
theory tells us that the system does not have a well-defined value but rather 
it possesses a latent potentiality of assuming any one of a set of possible 
values. Through the process of interaction between the system and the 
measuring apparatus or external field, the process described by (14) is 
converted into a new process described by (12). The average momentum 
imparted to the system as it passes through a region in which there is a 
scalar potential 5"and vector potential ,.~is 

mb = VS" + ~r (15) 

The presence of the external fields serve to modify the relative likelihood of 
the paths of the particle and consequently the probability of observing the 
system in any given state. 
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Since /t is absolutely continuous with respect to /2, the probability 
measure density 

d~ 
d/2 [ X'(o,, .)] = .)) (16) 

exists where X(~o,.) is an Ed-valued function on [s,t] (i.e., a sample 
function). The Radon-Nikodym derivative (16) is given by the Girsanov 
formula (19) (Girsanov, 1960), which can be rationalized in the following 
manner. The problem is one of deciding between two (complex) probability 
measures/.t and/2 on the basis of "observing" a sample function X(~o, r), 
s ~< r ~< t. The increment in the likelihood ratio (16) due to the increment in 
the process d)]" is 

do = ipmb dX/  h (17) 

which can be viewed to be analogous to the Feynman postulate relating the 
probability amplitude to the action. On account of the statistical correla- 
tions between the system and the measuring apparatus, represented by the 
presence of the external fields, dp/o ~ dlnp but rather using the It6 
differentiation rule, we have 

_ 1  - " h b+ D b d r )  (18) 

Then integrating on the interval [s, t] we obtain the Girsanov formula: 

)) P['f((~~ r <~t]=exp - h  s b+d ' f ( -2b  bdr (19) 

Due to the presence of the It6 stochastic integral, expressmn (19) for 
the complex probability measure density is in a somewhat inconvenient 
form. Use of the It6 formula 

~ ' V 5  p+ dX = 5a (X( t ) ) - ,Y~( f f ( ( s ) ) - f ' (0~ ,~ '  - iD: V V5,") dr  (20) 

and the definition of the Fisk-Stratonovich symmetric integral 

(21) 
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allows us to cast expression (19) in the form (Lavenda, 1982) 

{ i [ sP( f ( ( t ) ) - , -9~  p [ k { ~o , "r ) , s ~ "r ~ t ] = e x p -~ 

+ f ~ +  od)( + V( )(('r))d'r]) 

where we have set 

(22) 

0~5 p + h - l D :  ( V5 p + .s~')( V5 '~ + ~ ) + -  iD: V(  V<9" + ,s~) = - V(x )  

(23) 

The connection with quantum mechanics can now be achieved by 
linearizing equation (23) through the transformation 

5 # = - ih In ~p (24) 

to obtain the Schr/Sdinger equation 

Jh a Tq~ = 1 2 m ( - i h v + d ) ( - i h v + z a c ) q J + V ( x ) q J  (25) 

The Schr6dinger equation (25) identifies V as the scalar potential appearing 
in the generalized Hamilton-Jacobi equation (23) [cf. discussion following 
Equation (91)]. 

Expression (22) is the most general expression for the complex proba- 
bility measure density for the transformation of the free diffusion process 
)((t) into the quantum mechanical diffusion process X(t). It should be 
borne in mind that the functional (22) is determined uniquely in terms of 
the scalar potential V and the vector potential ,s~'. In contrast to classical 
mechanics where the external fields act through the force to create a change 
in the motion of the particle, in quantum mechanics they alter the proba- 
bility measure density of the path trajectories of the particle. This funda- 
mental quantum mechanical property of the probabilistic effect of external 
fields is made apparent by expressing the complex transition probability 
density in terms of a conditional expectation of the complex probability 
measure density (22). 

The (complex) probability that the solution )~,.,(t) of the free diffusion 
process (14) is found in the Borel set .,~ at time t, if it was in the state y at 
the earlier instant s, coincides with the function 

~ {  f(~.s(t) ~ ~ }  = [~(~, tly, s) (26) 
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By virtue of the Radon-Nikodym theorem, the transition probabilities P 
and P, for the quantum and free diffusion processes, are related by 
(Gihman and Skorohod, 1972) 

P(.~,tly, s)= fx~(x)p(x, tlY, s)~{ 2,,,(t)~dx } (27) 

where X is the indicator and 9(x, tly, s) is the conditional expectation 

i (y ) ] )  p(x, tly, s) = exp{ -~ [ 5 : ( x ) -  50 

"E{exP[hfst(,x~C+~ ) (28) 

Since the complex transition probability for the free diffusion process is 
given by (5), viz., 

P(~, t ly ,  s ) = 

{ -4itr( t - s ) } - d/2 
IDIX/2 

f d  [ i ( x - y ) + D - X ( x - Y ) ]  
xp - 4 ( t -  s) dx 

(29) 

expression (27) can be written as 

(-4iTr( t -  s ) } -d/2 
P(~ , t [y , s )= 

IDI 1/2 

• f ~ ( x ,  tly, s)exp[ i(x-y)+D-l(x-Y) 1 - 4 ( t  : -s - )  dx (30) 

or in terms of its density we have [cf. equation (8)] 

p(x, tie, s) = o(x, tie, s ) p ( x ,  tie, s) (31) 

where p is the complex transition probability density of the free diffusion 
process. 

For given external fields, V and ~r the generalized Hamilton-Jacobi 
equation (23) can, in principle, be solved for the action 6:. In many cases, it 
is easier to solve the linear equation (25) and obtain 5 ~ through the 
logarithmic transformation (24). Hence, the complex transition probability 
density of the quantum mechanical diffusion process is uniquely determined 
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in terms of the applied external fields V and ~r And since the complex 
transition probability density is the propagator of the probability density 
according to (9), it is clearly seen that the external fields will influence the 
probability distributions rather than having the classical effect of acting 
directly on the particle to change its motions via the force they create. 

The complex transition probability density expression (31) affords a 
direct connection with the Feynman propagator (Feynman and Hibbs, 
1965). Introducing the wave function q, according to (24) into the condi- 
tional expectation (28), the complex transition probability density (31) can 
be written in the form 

d/(x,t) K*(x, tly, s) (32) p(x, tly, s) ap(.V,s) 

where K* is the complex conjugate of the Feynman propagator 

K*(x, tly, s) = ( - 2 i ~ r h ( t -  s)/m }-d/2 

xE(exP[h f f (~ '§176  ) 

x e x p [ -  im(x -  y)+(x- y) 
-2h ( - ~ -  s) ] (33) 

Expression (33) is easily recognized as the Feynman-Kac formula for the 
Green's function of the complex conjugate Schr6dinger equation with the 
initial condition 

lim K*(x, tly, s )  = l imp(x,  tly, s )  = 6 ( x  - y )  
t~s  t~s  

(34) 

The complex transition probability density satisfies the pair of 
Kolmogorov equations 

ih O t p = - -  v " b p  - -  "~'-~n] m p (35) 

and 

i h  . ,  
- 3sp = b'v 'p  - ~ - -~m A. p (36) 

where A _-- V 2 and the prime means differentiation with respect to the initial 
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coordinates of the transition. The Fokker-Planck equation (35) is to be 
solved with respect to the initial condition (34) and the backward 
Kolmogorov equation (36) has the end point condition 

l imp(x,  fly, s) = 8 (x  - y )  (37) 
s T t  

The derivation of the pair of Kolmogorov equations is based on the 
Chapman-Kolmogorov equation (7). In an analogous fashion, Feynman 
(1948) used the propagator expression 

t) = fi (x, tly, s)q (y, s) dy (38) 

to show that q, satisfies the SchrtSdinger equation. But whereas Feynman 
postulated the form of the kernel based on a suggestion by Dirac (1933) that 
". . . i t  would seem desirable to take up the question of what corresponds in 
the quantum theory to the Lagrangian method of the classical theory," we 
have obtained an explicit expression for the propagator [cf. equation (33)] 
from the fact that we have introduced the quantum mechanical diffusion 
process (12) which is lacking in the Feynman path integral formulation. 

Compatibility with traditional quantum mechanics can be demon- 
strated by introducing (32) into the complex Fokker-Planck equation (35). 
We then obtain 

Otp = - V ' J  (39) 

where J is the complex transition probability current density 

h 1 
J ( x ' t l y ' s ) =  im ~b(y,s)  { K * V q , ( x , t ) - q / ( x , t ) v K * }  (40) 

Expanding the wave function in a complete set of eigenfunctions, q~,,(x), 

~,(x, t) = E c,,q~,,(x)exp(- iE, , t /h)  (41) 
n 

with the corresponding eigenvalues E,, and expressing the complex con- 
jugate of the kernel as a bilinear sum of eigenfunctions, 

K*(x, tly, s)= Y'.ep*(x)ep,,,(y)ex(3[iE.,(t-s)/h ] (42) 
r t !  
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we can write (40) in the form 

J(x ,  tly, s) = h 1 ( 
im ~ (y, s) 

Y'. c,,e-m"s/%,,,(y)[q~*Vq~,,- q~,,Vq~,,* ]} 

(43) 

In the case where there is no interference of the contribution of different 
stationary states, expression (43) reduces to the well-known expression for 
the real probability current density. The evolution of quantum systems is 
therefore due to the nonclassical phenomenon of interfering alternatives. It 
also follows from (42) that the transition probability density is properly 
normalized viz., 

_ _  - i E  s / h  * l ~, , (y)e " f ~ , , ( x ) , , , ( x ) d x = l  (44) f p(x, tly, s) dx= r  

The nonclassical phenomenon of interfering alternatives can now be 
derived in a completely classical manner. Let p,, be the complex transition 
probability density for the system to make a transition to the state q~,,(x, t) if 
it was known to be in the state +(y,s)  at the earlier time s. According to 
(32), this transition probability density is given by 

ep (x, t) X*(x, tly, s) (45) p~(x, tly, s ) -  ~b(y,s) 

Similarly, for the transition to the state q,~(x, t) we have 

p~(x, tly, s) + ( y , s )  K*(x,  tly, s) (46) 

Denote by G, and ct~ the complex probabilities for the events a and ft. Note 
that the only difference with classical probability theory is that we cannot 
impose the condition c,, + c~ = 1 since the transition probability density is 
complex in quantum mechanics. Now the complex transition probability 
density for either event a or fl is given by the formally classical expression 

p( x, tly, s) = G p~( x, tly, s ) + c~p~( x, tly, s) (47) 

In order to show that (47) is in complete agreement with the quantum 
mechanical interpretation of interfering alternatives where the probability 
density is given by 

p( x, t) = [c~q~a( x, t ) + c#q~( x, t)l 2 (48) 
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we multiply (47) by P(Y, s) and integrate over y: 

f p(x, fly, s)o(y, s) dy = f (c.p. + capa)p(y, s) dy 

= [ coCo(x, , /+ c ~ ( x , , / ]  

x fK,(x, tly, s)@*(y, s) dy 

= Ic~q~ + c~ljI 2 = p(x ,  t) (49) 

In the derivation of (49) we have used expressions (38), (45), and (46). It is 
also evident from (49) that the complex transition probability density is the 
propagator of the probability density [cf. equation (9)] in the exact same 
way that the kernel is the propagator of the wave function [cf. equation 
(38)]. Furthermore, (49) shows how the quantum mechanical phenomenon 
of interfering alternatives can be accounted for by combining (complex) 
probability densities according to the methods of classical probability 
theory. In Section 5, we shall illustrate how quantum phenomena can be 
explained in this way. 

Having developed the mathematical apparatus of quantum diffusion 
processes we are in a position to investigate the stochastic structure of 
quantum theory. However, prior to such an investigation, it will prove 
advantageous to compare the stochastic and causal formulations. 

4. STOCHASTIC VERSUS CAUSAL INTERPRETATIONS OF 
QUANTUM THEORY 

In many respects, the generalized stochastic formulation can be consid- 
ered as an outgrowth of the statistical justification of the causal interpreta- 
tion of quantum mechanics. A comparison between the two interpretations 
will serve to illustrate the inherent limitations of the causal theories to 
encompass the entire spectrum of quantum phenomena. 

The classical statistical interpretations of quantum mechanics (Ghirardi 
et al., 1978) attempted to extract real field equations from the complex 
SchrOdinger equation through the Ansatz: 

i [ S ( x , t ) - i R ( x , t ) ] )  ~b(x, t) = exp{-~ (50) 

where S and R are real fields. In comparison with the generalized stochastic 
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formulation, this means [cf. equation (24)] 

s , ' (x,  t) = s ( x ,  t)-iR(x, t) (51) 

Consequently, the complex drift vector (15) is given by 

b = 1 [  v S  + ~ -  i v R ]  (52) 
177 

Observe that a component of the vector potential is absent in the imaginary 
component of the drift. This will be seen to be a consequence of the fact 
that all external fields must be real in order for the probability distribution 
to be real and a conserved quantity (cf. the discussion at the end of this 
section). 

Introducing (51) into the generalized Hamilton-Jacobi equation (23) 
results in the pair of field equations 

2 O,R +-~D.vR(VS+.,e)++ D:v(VS+ se)=O (53) 

0 , ,+!o  + ] h " ( v S + z a c ) ( v S + d )  -D"  V R V R + + v v R  = - V  

(54) 

Equations (53) and (54) are to be solved for the given initial conditions 

S ( x , 0 ) = S 0 ( x  ) and R(x,O)=Ro(x ) (55) 

That is, the initial conditions are given for the configurations space fields R 
and S instead of the initial conditions for a system of particles (Keller, 
1953). 

The physical interpretation of the field equation (53) is straightforward. 
Multiplying (50) by its complex conjugate and using the Born probability 
relation p = Iq, I 2, we obtain 

Denoting 

R(.,:,t)= �89 (56) 

v = • ( v s  + ~ ' )  (57) 
m 

as the current velocity and inserting expressions (56) and (57) into the field 
equation (53) results in 

Otp + V'pv  = 0 ( 5 8 )  

provided the diffusion matrix is given by (13). 
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The second field equation (54) has the form of a classical Hamilton- 
Jacobi equation with the additional scalar potential 

v ( x ,  t )  = - - -  
1 [(vR)2+hAR]= ;- 

2rn ~ m [ � 8 9  (59) 

The time-dependent scalar potential (59) was first commented on by 
de Broglie (1927), who sought to establish a quantum description of matter 
as a modified form of classical mechanics. His interpretation developed into 
the so-called "pilot-wave" theory. It was rederived by Bohm (1952b) in his 
causal interpretation and has come to be known as the "quantum" or Bohm 
potential. 

Especially in the presence of the vector potential d ,  it is more instruc- 
tive to consider the physical Euclidean space E 3 and identifyz~'as - ( e / c ) A ,  
where A is the electromagnetic vector potential, e is the charge, and c is the 
speed of light. On taking the gradient of equation (54) and using the field 
equations 

B=v• E=-10,A-v~b (60) 
r 

where B is the magnetic field strength and �9 is the scalar potential, we 
obtain 

mdtv = - xT V + exTdP + F -  v U  (61) 

The substantial derivative has been denoted by d, and F is the Lorentz force 

F = e [  E + l ( v •  (62) 

Therefore, the separation of the complex field (50), satisfying 
Schr6dinger's equation (25), yields the continuity equation (58) and the 
Euler equation (61) for a nonviscous fluid under the influence of a scalar 
potential (59) which displays a somewhat mysterious dependence on the 
density and its gradient. For the particular case of a fluid at rest, v--0,  
stationary quantum states of the system result. Since R = hln 4' we obtain 

h 2 
2m 54' - V4' = e4' (63) 

upon integrating the Euler equation (61). The constant of integration, e, has 
dimensions of energy. The fact that the stationary Schri3dinger equation (63) 
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results when S = 0 led the adherents of the causal interpretation to the 
conclusion that R behaves much more like an attached field than S 
(Freistadt, 1957). This is to say that it is possible to conceive of an electron 
without an S field but not without an R field. 

In the framework of the classical stochastic approach, it will be 
appreciated that the decoupling of the field equations by setting S =  0 
corresponds to quantum mechanical bound states when a time analytic 
continuation is performed on real Markov processes (Guerra and Ruggiero, 
1973). When S ~: 0, it cannot account for the way quantum theory describes 
the change in probability in time due to the interference of the contributions 
of different stationary states. In summary, there is no way in which two real 
fields can interact so as to account for quantum phenomena which are 
described by a single complex field. It is precisely the complex nature of this 
field that thwarts a purely classical interpretation. 

The pair of hydrodynamical equations, (53) and (54), were rederived in 
the classical stochastic formulation which sought to establish an equivalence 
between classical Markov processes and quantum mechanics (Nelson, 1966). 
In contrast to the causal interpretations which seek a decomposition of the 
Schrrdinger equation for the complex 4' field into two real field equations, 
the classical stochastic formulation sought to derive the SchrOdinger equa- 
tion from a Brownian motion process on configuration space. Whereas in 
the causal interpretation, the statistical implications followed as a conse- 
quence of the continuity equation (58), the classical stochastic formulation 
introduced the statistics through the stochastic nature of the particle mo- 
tion. According to the causal interpretation, the observable particle density 
represented the supposedly unobservable background fluid in which O = 14'12 
represented the equilibrium distribution of particles. If 0 ~ 14'12 initially then 
it would be brought about in time through the action of random fluctua- 
tions. In fact, Bohm (1953) went to the extent of drawing an analogy 
between 14'12 and an equilibrium Gibbs ensemble and invoked an H theorem 
for its establishment. However, such an irreversible mechanism is lacking in 
the time reversible field equations (58) and (61) and no such mechanism is 
compatible with the evolution they describe. 

The classical stochastic approach attempted to establish an equivalence 
between real Markov diffusion processes and quantum mechanics (Nelson, 
1966, 1967). The particle was assumed to undergo Brownian motion in 
configuration space, being described by the stochastic differential equation 

dX( t ) =/3(X(t) ,  t) dt + (2u )l/2 dW( t ) (64) 

where W(t) is a real probability measured (standard) Brownian motion and 
dW(t)  is independent of X(~-) for ~ ~< t. The real drift vector/3 is the mean 
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forward derivative of the process X(t), viz., 

~ X (  t ) - lim~--lE{ X( t + "r)- X(t)lP, } = /3(x( t ) ,  t) 
r,l,0 

(65) 

where the conditional expectation is taken with respect to an increasing 
family of o algebra of events P,, generated by the process up to time t. It is 
quite evident that the irreversible diffusion process (64) cannot be made 
compatible with the reversible behavior of quantum phenomena so that the 
classical stochastic formulation was constrained to consider the correspond- 
ing time-reversed diffusion process 

dX(t)  = f l , (  X( t ) ,  t) dt + (2v) t/2 d W , ( t )  (66) 

where W, has the same statistical properties as W with the exception that 
dW,(~)  is independent of X(t) for t >/~-. The mean backward velocity is 
defined as 

~ , X ( t ) = l i m r - l E { X ( t ) - - r X ( t - r ) l F , }  = # , ( x ( t ) , t )  (67) 
r,l,0 

where the conditional expectation is now taken with respect to a decreasing 
family of o algebras F,, generated by the process down to time t. In other 
terms, P, represents past events while F, represents future events. 

It should now be appreciated that if the Brownian motion is to satisfy 
simultaneously both (64) and (66), it cannot satisfy either of these processes 
separately but rather an average of the two (Lavenda, 1980). This artifice is 
used to eliminate the irreversible elements contained in both the forward 
and reverse diffusion processes. The averaging is made on the corresponding 
Fokker-Planck equations which yields both the time reversible continuity 
equation (58) and a time-dependent condition for dynamical equilibrium 
[cf. equation (76)]. 

Let us consider instead the Fokker-Planck equations for the forward 
and reverse processes that are satisfied by the transition probability density. 
This will serve to shed light on the physical nature of the underlying 
assumptions. The real transition probability density p satisfies the forward 
Fokker-Planck equation 

Otp = - V 'Bp + pAp (68) 

Following Doob (1953), we define the reverse transition probability density 
p ,  by 

p , ( y ,  six, t )p(x ,  t) = p(x ,  tly, s )p (y ,  s) (69) 
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Depending on how one specifies the probability density p, one of the two 
transition probability densities in (69) will be dependent on this choice. For 
if we take p as the initial, equilibrium distribution, then the transitional 
probability density p can be chosen quite independently of p. But once p is 
fixed, the reverse transition probability density p ,  will, in general, be 
dependent on p. Alternatively, if we choose p such that 

lira p ( x ,  t l y ' , s ) = p ( x , t  ) (70) 

then a change in p will force a change in p. In this event, p ,  can be chosen 
quite independently of p. It should also be borne in mind that in order to 
describe quantum phenomena, neither the forward process (64) nor the 
reverse process (66) is stationary in the wide sense; the drift vectors have an 
explicit dependence on time. 

Introducing definition (69) into the forward Fokker-Planck equation 
(68) leads to 

a , p ,  = - ]3,-~7p, + u A p ,  (71) 

which is the time-reversed Fokker-Planck equation where 

]3, = ]3 - 2uV In p (72) 

It is no longer possible to average the forward and reverse Fokker-Planck 
equations, as is done in the classical stochastic formulation for the probabil- 
ity density, since the forward and reverse transition probability densities 
are, in general, different. However. we can make appeal to the principle of 
dynamic reversibility (Tolman, 1938), which guarantees that for any possi- 
ble forward motion there will be a reverse of that motion such that the same 
values of the coordinates are reached but in reverse order and with reversed 
values of the velocities. In order to apply the principle of dynamic reversibil- 
ity, it is convenient to decompose the drift vector into components on the 
basis of their symmetry under time inversion, viz., 

]3(x(t) ,  r) = v ( x ( t ) ,  t ) + u ( x ( t ) ,  t) (73) 

where v ---, - v and u ~ u under time reversal. Since for Markov processes, 
the past P, is equal to the future for reverse times F_, (Doob, 1953), it 
follows that 

@ , X ( -  t)  = l im ' r - lE  { X ( -  t ) -  X ( -  t - r ) IF  , } = ]3,(x(- t), - t) 
"riO 

= l i m r - l E (  X ( t ) -  X( t  + ~')lP,} = - ] 3 ( x ( t ) , t )  = - @X(t )  
r iO 

(74) 
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where we have used the property that the process X(t) is invariant under 
time reversal. From the decomposition of the forward drift (73) and relation 
(74), we conclude that 

t )  = - u ( x ( t ) ,  t ) +  v ( x ( t ) ,  t )  (75) 

and substituting (73) and (75) into (72) we obtain 

u = pV lno (76) 

Expression (76) is formally analogous to the Einstein condition of dynami- 
cal equilibrium. In the Einstein (1956) theory of Brownian motion, u is the 
fluctuating or osmotic velocity which is the velocity acquired by a Brownian 
particle due to the action of a (virtual) force that is needed to balance the 
osmotic force. The condition (76) is only formally analogous to the condi- 
tion of dynamical equilibrium since the probability density is an explicit 
function of time in the classical stochastic interpretation. This condition has 
the effect of reducing the forward Fokker-Planck equation (68) to the 
reversible continuity equation (58) and attests to the fact that averaging the 
forward and reverse Brownian motion renders a new process which is 
completely reversible. In fact, the derivation of the Schrrdinger equation is 
based on the reversible continuity equation (58), the formal condition of 
dynamic equilibrium (76), and a particular definition of the mean accelera- 
tion. 

The hydrodynamic equations for the two velocity fields, u and v, now 
follow straightforwardly by differentiating (76) with respect to time and 
eliminating the time derivative of the density with the aid of the continuity 
equation (58). This results in 

a,u= - v(u.  v ) -  p v ( v .  o) (77) 

which is the gradient of the field equation (53) for a diffusion matrix D = vl. 
In order to derive the equation of motion for v, we need a definition of the 
acceleration. This serves to introduce the force - V V through Newton's law 
of motion. Nelson (1966, 1967) argued that the only definition of the mean 
acceleration which does not distinguish between the forward and reverse 
direction of time is the symmetric combination 

� 8 9  ~ , ~ X ( t ) ]  = a (78) 

Then using the mean stochastic derivatives 

~f l , (X( t ) ,  t) = ( O, + f l 'V + p~)fl , (x(t) ,  t) (79) 
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and 

~ , B ( x ( , ) .  t) = (a, + ~ , . v -  ~6)B(x(,) .  t) 

in the evaluation of expression (78), we obtain 

o , v =  a - ( ~ , ' v ) o  + ( , . v ) u  + ~ a ,  

(80) 

(81) 

Equation (81) will be recognized readily as the gradient of the field equation 
(54). 

To what extent is the classical stochastic interpretation successful in 
giving the correct quantum mechanical description of matter.'? We need not 
look beyond the case of the free particle to point out the shortcomings of 
the classical stochastic interpretation. From the decomposition of the wave 
field through the Ansatz (50), the components of the drift vector (73) are 
related to the wave function by 

h 
v =  h---lmX71n4, and u = - - R e x z l n ~  (82) 

/'/~ IT/ 

For the case of the free particle, u = 0 and 

v = ,~/rn = const (83) 

The Fokker-Planck equation for the transition probability density of a free 
particle is 

0,p = - v.xTp + uAp (84) 

which has the well-known solution 

p (x ,  tl0 ) = (4~r~,t)- d/2exp{ -- Ix -- vtl2/4ut } (85) 

Clearly, expression (85) does not describe the periodic behavior of a free 
particle. Even an analytic continuation in time in which t - ~ -  it cannot 
render (85) periodic unless v = 0. In other words, only when the S field 
vanishes can an analytic continuation in time render the classical stochastic 
interpretation equivalent to quantum mechanics. The classical stochastic 
formulation cannot, in general, describe the nonclassical aspects of matter 
that result from the quantum phenomenon of interfering alternatives. There- 
fore, the time analytic continuation method can only achieve success in the 
classical stochastic description of bound states. 

In order to derive the Schr6dinger equation from the real field equa- 
tions (77) and (81), it is necessary to construct the complex drift vector 
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(Santamato and Lavenda, 1981) 

b(x ,  t) = v (x ,  t ) - i u ( x ,  t) (86) 

Consequently, we cannot demand that the Fokker-Planck equations for the 
hierarchy of probability densities be real. In particular, the probability 
density satisfies 

h 
Otp = - V" ( v - i u ) p  -i'~-~mAP (87) 

If we now impose the condition that p be real, we obtain the continuity 
equation (58) and the formal Einstein condition of dynamic equilibrium (76) 
as consequences of this condition. Furthermore, it is logically inconsistent to 
invoke Newton's second law into the Einstein-Smoluchowski description 
(64) of Brownian motion (Lavenda, 1980). In the generalized stochastic 
interpretation, classical mechanics enters insofar as the external fields 
modify the probability distribution. The scalar potential enters the expres- 
sion for the complex probability measure density through the generalized 
Hamilton-Jacobi equation. We now turn to a derivation of this equation by 
invoking average energy conservation in isolated systems and average 
energy balance in systems with an external vector potential (Santamato and 
Lavenda, 1981). 

First, consider an isolated system. Independent of whether the system 
is isolated or not, the energy is defined classically 

- ( 8 8 )  

which is a function of the quantum mechanical diffusion process. Its mean 
stochastic derivative is 

~ e =  Ore+ b - r e -  i 2 ~ A e  (89) 

In contrast to the definition of energy (88), the definition of momentum will 
depend on whether the system is isolated or not. In isolated systems, it is 
given by 

mb= V5 a (90) 

Introducing (90) into (89) and integrating in time yields 

1 )2- if m - V ( x )  + y- m ( = (91) 
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where the constant of integration, V, has dimensions of energy. It could be 
argued that via the correspondence principle, equation (91) must transform 
into the classical Hamilton-Jacobi equation in the classical limit as h $ 0. 
This would serve to identify V as the classical potential energy but it would 
not exclude the possibility that there would be other terms, proportional to 
h, in the constant of integration. Rather, we must make appeal to Ehrenfest's 
theorem, which states that quantum processes, on the average, satisfy the 
laws of classical mechanics. This does not exclude terms involving h to 
appear in the average equations of motion, as we shall see in Section 5.3. 
however, it does imply that the mean stochastic derivative of the action 5" 
be equal to the classical Lagrangian, viz., 

(92) 

Then on the strength of the generalized Hamilton-Jacobi equation (91), we 
identify V as the classical potential energy. 

Second, consider the system in the presence of a vector potential sd. To 
be concrete, consider the physical space E 3 in which the rate of change of 
the particle energy in time is given by the expression 

e fa. O,A d3r 
c 

where 8 is the particle current density. Quantum mechanics reinterprets J as 
the quantum mechanical probability current density (Santamato and 
Lavenda, 1981) 

_ ( e )  
j =  1 V 5 " -  A p+i-~mAp 

m 
(93) 

The mean stochastic derivative of the energy is still given by expression (89) 
but the drift is now 

b=--ml( VS~ (94) 

In order that there be a power balance, on the average, we must have the 
condition 

fo~d3r=-e fj. O,Ad3r (95) 

Inserting the quantum mechanical probability current density (93) and 
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integrating in time we obtain 

3 tSp+2_~l(VS,~_eA)  2 i h ( A S p _ e V . A )  e ~  - ~ c = - c  (r) (96) 

where several integrations by parts had to be performed prior to the final 
integration. Expression (96) is the condition for a stochastic balance of 
energy. Again invoking Ehrenfest's theorem, the constant of integration ~ is 
identified as the scalar potential. 

The classical stochastic interpretation contends that applied fields act 
via the force to cause a change in the motion of the particle. Yet, a force, in 
the Newtonian sense, necessarily entails a reaction which is completely 
foreign to quantum theory. Rather, in the generalized stochastic formula- 
tion, the applied fields have been shown to modify the probability measure 
of the particle trajectories. And since the particle trajectories are unobserv- 
able (i.e., the probability measure is complex), the only observable effect of 
the applied fields is to modify the probability that the particle will be found 
in any given state (i.e., the probability distribution is real). 

The realness of the probability density is a consequence of the fact that 
all applied fields are real. This explains why there is no vector potential 
appearing in the imaginary part of the drift vector (52). For if there were 
such a component, probability would not be conserved and this would 
entail major alterations in quantum theory. This is in support of the fact 
that quantum mechanics deals with real diffusion processes that are acted 
upon by real applied fields; albeit their associated probability measures are 
complex. The complexity of the probability measures for particle trajecto- 
ries can be said to stand in the defense of quantum theory which claims that 
they are unobservable. 

5. THE STOCHASTIC STRUCTURE OF QUANTUM 
MECHANICS 

In this section, we illustrate the complete compatibility between the 
generalized stochastic approach, which uses the methods of classical proba- 
bility theory and quantum theory by taking specific topics from quantum 
mechanics and showing how they are derived within the framework of the 
generalized stochastic formulation. 

5.1. Commutation Relations. It is well known that the failure of con- 
jugate variables to commute in quantum mechanics is related to the uncer- 
tainty relations which place a lower bound Qn the precision with which a 
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simultaneous measurement can be performed. We shall attribute the uncer- 
tainty to the statistical correlations between the diffusion process and any 
dynamical variable which is a function of the diffusion process. In the 
generalized stochastic interpretation, every dynamic variable is a function of 
the quantum mechanical diffusion process and the statistical correlations 
between any function of the process and the increments in the process itself 
will lead to a lack of commutativity which prevents their simultaneous 
measurement with unlimited precision. 

Consider the physical space E 3 and let O(r(t), t) represent a dynamical 
variable which is a function of the quantum diffusion process R(t) and 
possibly time. The forward It6 stochastic integral of O is defined as (It6, 
1944) 

N - I  

('O(R(~'),'r)dR(~-) = lim ~ (97) 
�9 Aa'O i = 0  

where the interval [s,t] has been divided into N - 1  subdivisions, A = 
max,[r(~-,+l)-r(~'i) ], and the limit is understood to be in the mean (1.i.m.) 
(assuming the condition E(f~'lO(r(r),'r)12dt) < ~  is fulfilled). Analo- 
gously, the backward stochastic integral is given by (Stratonovich, 1968) 

N - [  

f ' d R ( ~ - ) O ( R ( r ) , , ) =  lim E [r('ri+,)-r('ri)]O(r('ri+l),'ri+t) (98) 
s A~,O i = 0  

Neither the forward (97) nor backward (98) stochastic integral obeys the 
formal rules of calculus. However, they can be used to construct the 
Fisk-Stratonovich stochastical integral (Stratonovich, 1966) 

f ' O ( R ( r )  

O(R( r ) ,  T ) d R ( r ) - - ~ m  " v . O ( R ( r ) ,  r)  dr  

' t i h  t 

\ s s 

(99) 

which does obey the rules of ordinary calculus. The stochastic correction 
terms in (99) are related to the uncertainty in the final and initial states of 
transition, respectively (Lavenda and Santamato, 1979). In the midpoint 
definition of the stochastic integral [i.e., one-half the sum of (99)], the 
uncertainties in the end points of transition compensate one another and we 
obtain the Fisk-Stratonovich definition of the stochastic integral. On the 
other hand, if we take the difference between the two expressions in (99) we 
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obtain 

--; ;h f t v - O ( R ( z ) ,  ~-) dz ~ ' ( O ( R ( z ) ,  "r) d R ( z ) -  d a ( z ) O ( R ( z ) ,  z)} = 
$ 

(100) 

Expression (100) represents the uncertainties in the end points of transition; 
it is a prototype of the commutation relations in quantum mechanics, as we 
shall now show. 

Let O represent the displacement operator R. In differential form, it is 
easy to see that (100) is identical to the familiar commutation relation 

[R ,~ ]  = i h  (101) 

which is ordinarily obtained through the formal procedure of first quantiza- 
tion, b = - ih~7. It is important to bear in mind that this formal procedure 
has been superseded in expression (100) where the classical definition of 
momentum, p = m d R / d t  has been used. 

Now let O denote the angular momentum operator L. The usual 
commutation relations, given in the compact form (Schiff, 1968) 

L x L = ihL (102) 

is identical to (100) if we use the classical definition of angular momentum, 
L = R • p, instead of the first quantization expression L = - ihR • V. In 
fact, any observable O, depending upon the coordinates, and having the 
operator representation O, will satisfy the commutator relation 

[0 ,  ;~] = ihv .O(r )  (103) 

Expression (103) brings out the intrinsic relationship between the operator 
formulation of quantum theory and the generalized stochastic approach in 
which the observable is considered as a function of the quantum mechanical 
diffusion process and (103) is essentially the integrand of the stochastic 
correction term in (99). The fact that O is a function of the quantum 
mechanical diffusion process leads to statistical correlations between the 
integrands in (100) and the increments in the process itself. It is precisely 
these statistical correlations, modeled as Brownian motion, which give rise 
to the quantum mechanical uncertainty relations. 

5.2. The Viriai Theorem. The quantum mechanical virial theorem 

1 = o  d , ( (R-p})  = ~-((p"  } ) -  d3r = , }) 

(104) 
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where/2/is the Hamiltonian, can be derived in a completely classical way 
using the methods of classical probability theory. To this end, we employ 

~O(R( t ) ,  t) = lim-r-'E{ O(R(t + ~'), t + ~-)-O(R(t) ,  t)lP, } (105) 
-r J,0 

which is the mean stochastic derivative of the smooth function O(r(t), t) 
along a sample path of the stochastic process R(t). The mean forward 
derivative of the process itself [cf. (65)] is a special case of (105)�9 With the 
aid of the It6 chain rule of stochastic calculus, we have 

~O(R(t) , t)=(O,+b.v-iD:vv)O(r(t) , t)  (106) 

We now make the observation that the mathematical expectation is 
equivalent to the quantum mechanical rule for calculating averages, viz., 

EfO(R(t), t )}  = fo(r, t)0(r ,  t )d3r  = t ) 0~ ( r ,  t) d3r (107) 

which can easily be demonstrated by differentiating (107) in time. Classi- 
cally, we have 

a , E { O ( R ( t ) ,  t )}  = E{ ~ O ( R ( t ) ,  t )}  (108) 

while quantum mechanically we get 

d,(O) = (3,0)+ 2-~n ( [0 ,  9 ] )  (109) 

which will be recognized as the Heisenberg equation of motion where 
(.) =f+*.q~d3, .. Now 

d,f Ood3r= f o[ O, + b ' v -  iD �9 v v ]O(r, t) d'," = f p (  a, + ~ r  �9 

(110) 

and comparing (109) and (110) we obtain 

([O,/2/]) = ihE{ ~O(R(t) ,  t)} (111) 

where ~ is the infinitesimal generator of the quantum mechanical diffusion 
process, defined by (110)�9 In deriving (110), we have used the complex 
Fokker-Planck equation (87) for the probability density and have per- 
formed several integrations by parts. 
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Expression (111) is our fundamental result: it shows that the average 
temporal evolution of quantum mechanical observables is determined by the 
infinitesimal generator of the diffusion process in which the "systematic" 
drift vector is "guided" by the wave function according to the relation 

ih 
b = - - -  V In ~ (112) 

m 

in the absence of an external vector potential. If we now set O = R-p in 
expression (108) we get 

dt(R.p} = rnE{ ~(b-R)} (113) 

which with the aid of the gradient of the generalized Hamilton-Jacobi 
equation 

O,b+(b .v )b-  ih Ab 1 2m = - ~ V V (114) 

becomes 

dt(R'p)  = - E ( v V ' R }  +mE(b 2 } (115) 

In a stationary state, (115) vanishes giving 

mE(b 2 } = E ( R . v V }  (116) 

which is precisely the virial theorem since the left-hand side is twice the 
average kinetic energy. 

5.3. Ehrenfest's Theorem. Quantum theory considers the time-rate-of- 
change of operator averages corresponding to physical observables. Since 
the time-rate-of-change of the operator averages obey the classical equations 
of motion (i.e., Ehrenfest's theorem), the same should be true of the 
mathematical expectations of observables which are functions of the quan- 
tum mechanical diffusion process. Although in the classical limit the width 
of the wave packets become negligible and the average quantum mechanical 
equations of motion transform into the equations of motion of classical 
mechanics, quantum theory makes a more stringent demand by requiring 
the average quantum mechanical equations of motion to always coincide 
with the classical equations of motion. This is the essence of Ehrenfest's 
theorem, which we shall now derive in the context of the generalized 
stochastic formulation (Santamato and Lavenda, 1981). 
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Again consider the physical space E 3 in which a charged particle 
interacts with an external electromagnetic field Aft, t). The classical Hamil- 
tonian is 

1( )2 
H = ~  p - e A  + e ~  (117) 

The averaged quantum mechanical equations of motion are 

d,(R) = l ( p _  eA)  
m c 

and 

1 e ( R •  ) md,(i~) = e(E) + 2 7 

(118) 

(119) 

where e and B are the electromagnetic field strengths that satisfy the field 
equations (60) and R - - d , R  is the velocity of the particle. The striking 
nonclassical appearance of the last term in equation (119) has the explana- 
tion that since R does not commute with B, neither R • B nor - B  x R is 
Hermitian but rather their sum is Hermitian and corresponds to the 
classical term R • B (Schiff, 1968, p. 179). 

Since the generalized stochastic interpretation treats "processes" rather 
than "operators," it would appear, at first sight, that it would be unable to 
distinguish between the quantum and classical equations of motion. How- 
ever, we now show this not to be the case. 

Consider the equation of motion (118). The mean forward stochastic 
velocity is 

d~E{R(t)} = E (b (R( t ) , t ) }  = ml----E{ VS'~ eA} (120) 

where we have used expression (15) with ag = -(e/c)A. As for the second 
equation of motion (119), the mathematical expectation of the mean sto- 
chastic drift vector is 

E ( ~ @ b ( R ( t ) , t ) } = E { O , b + ( b ' v ) b -  it, , "' Ab~2m ) (121) 

is to be evaluated with the aid of the gradient of the generalized Hamilton- 
Jacobi equation (23), viz., 

~c ih e - - - V ~ p  O,b+ O'A+~vb2- 2~m v ( v ' b ) = -  m (122) 
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In equation (122), we have identified e~ as the scalar potential, V. On the 
basis of the field equations (60) and the vector identities 

~vb 2= (b'v)b+bx (V Xb) 

and 

V(v.b) =ab+ v x ( v  xb) 

Equation (122) can be written as 

Otb+(b 'v )b -  ih -~e E - b x ( v  x b ) + ~ - ~ m V x ( v x b  ) i h  (123) 

Now inserting equation (123) into equation (121) results in 

rnE ( ~b(R( t ), t ) } = E { F -  -~-~-~mc • (124) 

where F is the Lorentz force, (62), and the identity 

e t o  
V xb  - : - B  = - - - v x A = -  

m c  m c  

has been used. 
At first glance, the averaged equation of motion (124) would appear to 

contradict Ehrenfest's theorem on account of the term involving Planck's 
constant. Surprisingly enough, it is this term which renders the operator 
- ( i hV+(e / c )A )  Hermitian. This is tantamount to our condition that 
equation (124) be real (Santamato and Lavenda, 1981). In order to demon- 
strate the equivalence between the averaged equations of motion, (119) and 
(124), it suffices to introduce the operator - ( 1 / m ) [ i h v  + (e/c)A] for R on 
the right-hand side of equation (119). We thus obtain 

e 
mdt(R ) = e ( E ) -  ~ c c f  

(125) 

Since the sum of the first two terms in equation (125) is the Lorentz force F, 
the equivalence between equations (119) and (124) has been established. 

5.4. The Quasiclassical Approximation. We now establish the equiva- 
lence between the conventional WKB approximation for the wave function 
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and the same approximation for the complex transition probability density 
in the near classical limit as h ~, 0. By virtue of the logarithmic transforma- 
tion (24), the complex transition probability (32) can be cast into the form 

p(x, tly, s )=exp{h[5/ ' (x , t ) -SP(y ,s )+a*(x ,  tly, s)] } (126) 

where we have set 

a(x, tly, s) =ihlnK(x, tly, s) (127) 

The complex conjugate of (127) accounts for the statistical correlations 
between the state of the system and the measuring apparatus since fa* is 
uniquely defined by the applied external fields. The joint action ~ is seen to 
satisfy the pair of generalized Hamilton-Jacobi equations 

and 

1 a a *  + V(x) 0,a* = ( v a * ) ' - -  (128) 

1 ~hm A,a ,+  V(v) - 0 , f a *  = -~-~m ( V ' a * )  2 -  . (129) 

where the prime denotes differentiation with respect to the initial coordi- 
nates. 

We look for a solution to equations (128) and (129) in the form of an 
asymptotic expansion 

~2*=f~8+(h)fa] ~-'~2~ ""2-"  " (130) 

which when substituted back into equations (128) and (129) generates an 
infinite number of coupled equations by setting terms of the same power in 
Planck's constant equal to zero. To lowest order we have 

1 
- 0 ,aa+  ~-~m ( v a a ) 2 +  V(x)=0 (131) 

1 
0,a~ + 2 7  ( v 'a~)2+ V(y) = 0 (132) 

which are none other than the classical Hamilton-Jacobi equations for the 
classical action S,.. Hence 

aa(x, tiy, s) = ao(X, fly, s) = Sc(x, fly, s) (133) 
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and the classical velocities of the end points at thc transition are 

vc(x, t) = - 1 VSc, v; = 1 v,Sc (134) 
m m 

The first-order correction to the classical result (133) is obtained by 
solving 

0,at  = • v a a v a ~ '  + 2-!-~aaa (135) 
m 

- 0,a~' = lm v 'a~v 'a~ '  + 2-~A'a~ (136) 

Upon introducing the classical velocities (134) we get 

0,a~' = - vc. Va~' - �89 V" v~ (137) 

Osar = _ v , . v , a r  _ 1 v ' .  v,~ (138) 

Equations (137) and (138) manifest a symmetry in past and future, viz., 

a~'(x, t ly ,  s) = ai ' (y ,  six, t) (139) 

which is a consequence of the reversible nature of the quantum diffusion 
process. 

Equations (137) and (138) can be cast into a physically more intuitive 
form by performing the logarithmic transformation 

2a~  = l n o  (140) 

which converts them into the conservation law 

Oto + V.vco = 0 (141) 

The solution to the continuity equation (141) can be found by considering 
the forward classical Hamilton-Jacobi equation (131) (Santamato and 
Lavenda, 1980). In component form it reads 

1 
O,S~ + ~-~m ( OiSc) ( O,S~) + V ( x )  = 0 (142) 

Differentiating with respect to the initial coordinate and using the definition 
of the backward, classical velocity (134), we obtain 

rn ( O,o;i + v~jOjv'~,) = 0 (143) 
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Now differentiating with respect to the final coordinates and setting Q = 
[ -  0~0~S,.] and multiplying through by Q-l  results in 

Q - l : (  O,Q + uciOiQ)+ O,u,., = 0 (144) 

A comparison of equations (141) and (144) leads to the conclusion that 

o = I-  O,O}Scl (145) 

which is the well-known Van Vleck determinant. Therefore, in the quasi- 
classical approximation, the complex transition probability density is 

, / i ) 
P(X ' t l y ' s )  + (y , s )  {I-0,OjScl}l/2"exp - ~ S c ( x ,  tly, s) (146) 

Then comparing (146) with expression (32) we find that the Feynman ker- 
nel is 

i - (147) 

which demonstrates the complete equivalence between conventional quan- 
tum theory and the generalized stochastic interpretation in the quasiclassical 
limit (Santamato and Lavenda, 1980). 

5.5. Quantum Mechanical  Correlation Functions.  In Section 5.2, we 
have shown that mathematical expectations of functions of the quantum 
mechanical diffusion process correspond to the quantum mechanical aver- 
ages of operators in the traditional formulation. Even more can be said 
when we consider the set of multitime moments in the generalized stochastic 
formulation, and in particular the two-time moments or correlation func- 
tions. It will now be appreciated that the generalized stochastic formulation 
offers a straightforward generalization of the classical correlation functions 
to quantum theory. However, it should be borne in mind that the resulting 
expression will differ from those of classical probabihty theory since we can 
no longer impose the conditions of positivity or realness on the moments. 
This is attributed to the presence of a complex transition probability density 
in calculating the averages, and the form of the multitime moments will 
appear as another manifestation of the autoselectiveness of the generalized 
stochastic approach. Only physical observables will turn out to be real, 
averaged quantities. 
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The two time correlation function of any two functions, f and g, of the 
quantum mechanical diffusion process is defined by the classical expression 

E{ f (X( t ) )g (X( s ) ) } -  f fdxdy f (x )g(y)p(x ,  tly, s)p(y,s ) (148) 

The correlation function so defined possesses the following properties: 
(i) Compatibility 

E{ f( X(t))l( X(s)) } = E{ f( X(t)) } 

where l (x)  is the unit function, 
(ii) Linearity 

E{ f( X(t))[ag( X(s))+flh( X(s))] } = aE{ f(  X(t))g( X(s)) } 

+ fiE( f(  X(t))g(X(s)) } 
(iii) Symmetry 

E{ f( X(t))g( X(s)) } = E{ g( X(s))f( X(t)) } 

but not positivity or reality. The symmetric operator ordering rule is 
equivalent to taking the real part of the correlation function, viz., 

�89 + ~ )  = ReE{ f( X(t ))g(X(s)) ) (149) 

The definition of quantum mechanical correlation functions provides a good 
testing ground for the comparison of the classical and generalized stochastic 
approaches. 

On the basis of the harmonic oscillator, Guerra and Ruggiero (1973) 
have argued that the process corresponding to the ground state in the 
classical stochastic approach is equivalent to a Brownian motion with 
imaginary time. We now show that the time analytic continuation method 
gives the correct quantum mechanical result only in the case that the real 
current velocity v vanishes (cf. Section 4). Furthermore, it is immaterial 
whether one considers the ground state or an excited state. We shall 
attribute this to the property of bound states in which the wave properties 
of matter do not come into play. 

According to the classical stochastic interpretation, the real drift is 
given by expression (73), which on account of the formal condition of 
dynamical equilibrium, (76), can be written as 

rio(X, t) = v( x, t )+ 2-~70.,.ln po(X, t) (150) 
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in E I where the subscript denotes the ground state. In the case of the 
harmonic oscillator, the ground state wave function is 

(m~/1/4 I 
~0(x, t) = ~,--~-h- } e x p , -  -~x-mW ~ _ icot) (151) 

so that the drift associated with this state is 

rio(X) = -cox  (152) 

The diffusion process associated with the ground state of the harmonic 
oscillator is described by the stochastic differential equation 

( h--]'/2dW(t) (153) dx( t )  = - cox(r) dt + ~ m j 

where W is a real probability measured (standard) Wiener process. 
Since equation (153) is simply the Ornstein-Uhlenbeck process on 

configuration space, we know that the transition probability density is 

P~ ~h[1-exp(-2co~-)] ] exp / h [1-exp(-2co~)]  

(154) 

Then invoking time analytic continuation, r - , -  it, it is easy to see that 
(154) propagates the ground state probability density, 

( mco'~l/z [ mw ~ 
Po(Y) --~--1 e x p , -  --~-y-] (155) 

according to (9), which in this case is 

po(x, r) = f Po(X, - irJy)po(y ) dy (156) 

We may immediately generalize the time analytic continuation method 
to excited states, provided t, = 0. The drift corresponding to the first excited 
state is 

ill(x) = h 0,.lnqh(x, t) (157) 
m " 
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where ~x is the wave function of the first excited state 

2mco 
~l(x,  t) = T x % t x ,  t ) exp( -  icot) (158) 

And consequently, the Fokker-Planck equation for the real transition 
probability density of the first excited state of the harmonic oscillator is 

= cox Pl - ~mO.,.Pl O,p I - O~ x (159) 

which is simply the Rayleigh process (Stratonovich, 1963). The solution to 
equation (159) may be expressed in the form [cf. equation (32)] 

O~(x, t) K ( x ,  ~[y) (160) p t ( x ' r [ Y )  q~(y,0) 

where K is the real kernel 

" 21rh sinhwr 

mco 
�9 exp{ 2hs inhw, r l ( x2+ y2 )coshw ' r -2xy] )  (161) 

Here again, a time analytic continuation of the kernel (161) [but not the 
transition probability density (160)!] gives the correct quantum mechanical 
result. Upon performing the time analytic continuation ~---o- i~, (161) 
transforms into the complex conjugate of the Feynman kernel and (160) 
then propagates the probability density of the first excited state of the 
harmonic oscillator according to (Santamato and Lavenda, 1981) 

(x ,  r = f pl(x, - i . r [ y ) p x ( y )  dy (162) 

where 

p t ( x , -  i~'[y) = ~ ( x , - r )  K ( x ,  - i.rly) = - - K * ( x ,  ~'IY) 

The reason why analytic continuation works for the kernel and not for the 
transition probability density is that the first factor in (160) describes the 
interference of the state with itself at two different times. 
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To understand why the time analytic continuation procedure does not, 
general, give the correct quantum mechanical results, it suffices to 

time t = 0, the 

where 

system is 

[ rnco ~1/4 [ 
q~o(X, t )=l--~-~] exp[ 

1 DTO~ 
(x - acos ~ot) 2 

2 h 

im~o ] 
i 9 �9 ] ( ax sin ~ot - za-sm 2~ot - + i wt 

h 1 
(164) 

which can either be obtained by solving SchrOdinger's equation or applying 
time analytic continuation to the kernel (161) and then using the propagator 
relation 

ePo( X, t) = f K( x, itly, is )qJo( y ,  s) dy 

f K( y, islxo)%( Xo) dxo (166) q'o( Y, s) 

The drift corresponding to the ground state is now given by the 
expression 

flo(X, t) = - ~0[x - a(cos t o t -  sinwt)] (167) 

so that the real Fokker-Planck equation is 

h 
O,p o = r - a(cos ~ot - sin~ot)] Po + ~-~mO;-Po (168) 

The solution to equation (168) is easily found to be 

1/2 { oo ) 
P~ ~rh [1 - e x p ( -  2,o(t  - s))]  

xexp  - h [ 1 - e x p ( - 2 ~ o ( t - s ) ) ]  

(169) 

(165) 

in  

consider the initially displaced harmonic oscillator. At 
harmonic oscillator is in the ground state 

(m ,oX ' / '  r ,,,~ ,o(Xo) = \--~--] e x p [ -  -~--(x o - a) 2] (163) 

which is centered about the position x = a. At a later time t, the state of the 
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In contrast to the transition probability density (154) for a-= 0, the time 
analytic continuation of (169) does not lead to the correct quantum mechan- 
ical result (Grabert et al., 1979). This is clearly seen by calculating the 
correlation function, over the ground state. The result is 

S(t)X(s)} = f f  axayxypo(X, tly, S)Oo(y, s) E{ 

- 2h exp[-to(t-s)]+a2cos~tcos~os (170) 

It is now apparent that a time analytic continuation of (170) does not 
describe the reversible behavior of the quantum mechanical harmonic 
oscillator (Grabert et al., 1979). 

The reason why the analytic continuation method for real Markov 
diffusion processes does not reproduce the quantum mechanical results is 
due to the fact that the current velocity, v = -  asino~t, does not vanish 
unless a does. Hence we can expect the nonclassical aspects of matter to 
manifest themselves. It is also to be noted that the real diffusion process is 
not stationary in the wide sense. If, on the other hand, we apply the 
generalized stochastic approach, 

bo( x, t) = io~ [ x - a e x p ( -  io~t )] (171) 

is identified as the complex drift for the ground state of the initially 
displaced harmonic oscillator. The corresponding complex Fokker-Planck 
equation for the ground state is 

ih Otpo= i~O.,.[x-aexp(-io~t)]po---~mO~po (172) 

which is to be solved subject to the initial condition (34). The solution to the 
complex Fokker-Planck equation (172) is 

{ m~ }1/2 

Po(X, tly, s) = h ~ r [ 1 - e x p ( 2 i w ( t - s ) ) ]  

{ rnt~176176 
• exp - ~ [ l ~ e x p - ~  s))] 

Instead of the correlation function expression (170) we now have 

E{ X(t)X(s)} = 2 m - ~ e x p [ i ~ ( / -  s)] + a2cos ~ t  cos oJs 

(173) 

(174) 
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For t = s, both correlation functions. (170) and (174), give the correct 
second moment 

E ( X ( , )  2} = h 2 m---~ + a2c~ (175) 

of the harmonic oscillator. However, for t > s, it is only (174) that correctly 
describes the periodic statistical correlations of the quantum mechanical 
oscillator. Finally, the real part of the correlation function expression (174) 
coincides with the expression obtained by applying the symmetrization rule 
of quantum mechanics (Shewell, 1957) [cf. expression (149)]. 
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